Addition Year 2											
Objective and Strategy	Concrete	Pictorial	Abstract								
Adding multiples of 10	$50=30=20$ Model using bead strings，base ten or Numicon	3 tone +5 tens $=$ \qquad $30+50=$ \qquad Use representations for base 10	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\ldots=60 \end{aligned}$								
Use known number facts Part－part－ whole	Children explore different ways of making 20	$\begin{gathered} 20 \\ \square+\square=20 \\ \square+\square \\ \square+\square=20 \\ \square=-\square \\ \hline=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$								
Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square} \square=\square_{\square} \square_{\square} \square \\ & \square \end{aligned}$	Children draw representations of $\mathrm{H}, \mathrm{T}, \mathrm{O}$ $\because+\therefore=\therefore$ $\\|\\|+\\|\\|=\\| \\|\\| \\|$ ロ日 + 昌 $=$ 昌昌	$\begin{aligned} & 3+4=7 \text { leads to } \\ & 30+40=70 \ldots . . . \text { leads to } \\ & 300+400=700 \end{aligned}$								
Bar model introduction	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$								

Add a 2 digit and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\ldots=57 \end{aligned}$
Add two 2 digits	朋階 Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+57 \\ 20+50+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Subtraction Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Use of a number line to count backwards		Year 2 - use of a blank number line to build on from work in Year 1	
Make 10	$14-5=$ 14 take away the 4 to make 10. The take away the other $1=9$	13 minus 3 to make 10. Then subtract the remaining 4	$16-8=8$ How many do we take off first to get to 10? How many are left to take off?
Partitioning without regrouping	Use Numicon or base ten to show how to partition and subtract	$43-21$ Children cross off the number after drawing base ten.	$\begin{aligned} & 43-21 \\ & 40+3 \\ & -20+1 \\ & \hline 20+2=22 \\ & \hline \end{aligned}$

Partitioning with regrouping	1) Start by partitioning 45 2) Exchange one ten for ten more ones 3) Subtract the ones, then the tens.	Represent pictorially - children cross off or draw BaseTen/Numicon	$\begin{aligned} & 67-19 \\ & 60+{ }^{1} 7 \\ & 10+9 \\ & { }^{40} \frac{50+8}{50}=48 \end{aligned}$ Those confident will move onto the following; $\begin{array}{r} 567 \\ -\quad 28 \\ \hline 39 \\ \hline \end{array}$

Multiplication is commutative	Create arrays using counters, cubes and Numicon Children need to understand multiplication can be done in any order and that the answer is not affected.	Children draw the arrays to demonstrate their understanding.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the inverse (Taught alongside division)	Create arrays using counters, cubes and Numicon and match to the calculations verbally. $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \end{aligned}$ 8 shared between $2=4$ 8 shared between 4 is 2	Children draw triangles to show fact families using understanding that is multiplication is commutative and links to division.	$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 4=8 \div 2 \\ & 2=8 \div 4 \end{aligned}$ Show all related multiplication and division facts in fact family sentences.

Division Year 2			
Objective and Strategy	Concrete	Pictorial	Abstract
Division as grouping	Divide quantities into equal groups using cubes, counters and objects to support understanding.	Use number lines for grouping. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many there would be in each group either by drawing in the bar or knowledge of tables. Eg $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group? How many groups of 6 are in 24 ?
Repeated subtraction	Children repeatedly subtract in groups of a number. $\operatorname{Eg} 6 \div 2=3$	Children represent this repeated subtraction by drawing on a number line.	Blank number line

Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Verbally explain sentences $\begin{aligned} & 15 \div 3=5 \\ & 15 \div 5=3 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	Children draw an array and use lines to split the array in to groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ $\begin{aligned} & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

